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Results are presented of numerical computations of a stationary axisymmetric film 
flow consisting of two immiscible fluids. 

Spreading of a liquid film over a rotating plane surface is encountered in many tech- 
nological processes whose analysis requires knowledge of the hydrodynamic characteristics 
of such a flow. A single-layer flow is examined in a number of papers whose survey is pre- 
sented in [I]. The collocation method [i, 2] is used in this paper to analyze a two-layer 
flow. 

Let viscous incompressible fluids be delivered at the constant mass flow rates QI and 
Q2 near the axis of rotation of a disc, where the subscript i corresponds to the lower fluid, 
and 2 to the upper. Analogously to [2], the velocity components in a fixed cylindrical 
coordinate system connected to the center of disc rotation are represented in the form 

u~ = wr6Zu, Uo = mr(1 q- 6Zv), u~ = ~H,5~w. 

Without taking account of the surface tension on the interfaces the system of equations 
and boundary conditions describing the stationary axisymmetric film flow has the following 
form [2] to the accuracy of terms of order (H,/r) 2- 
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where Hz, H2 are thicknesses of the lower layer and the film, respectively, x = in (r/R), 
y = z/H,, the notation [a] = a 2 - a I is used in (5), the quantities al, a 2 refer to the lower 
and upper layers, respectively. Here (i) is the continuity equation, (2) and (3) are the 
equations of motion for the radial and azimuthal velocity components, respectively, where 
~f = i for the lower layer and ~f = ~ for the upper, (4) is the adhesion and nonpenetration 
condition on the disc surface, (5) is the kinematic condition, the conditions of continuity 
of the velocity and tangential stress components on the boundary between the layers, and 
(6) is the kinematic condition and conditions for no tangential stresses on the free surface. 

Spreading of the film is considered as a Cauchy problem with the initial conditions 
formulated below for x = 0. 

The streamlines y = hn(x) and the values of the velocity components on them Un(X) = 
u(x, hn(x)), Vn(X) = v(x, hn(x)), n = i, 2, .... N are introduced from the numerical solu- 
tion, where hM ~ H~ and hN E Ha. A system of ordinary differential equations can be ob- 
tained for the variables hn, Un, vn from (1)-(6) [i] 
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---dx-x == d~-~---" u ~ + u n _ l  \ dx dx + 2 ,  
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I ( 1) dr,, _ czj Ozv --2 on + - - ~  , 
dx 6~un Oy z V=h n 

n = 1, 2 . . . . .  N, h 0 ~ 0 ,  uo~0 ,  

where =f = i for n = i, 2, ..., M and ~f = a for n = M + i, ..., N. 

A tau-approximation using displaced Chebyshev polynomials of the first kind defined 
by the formulas [4] 

~1 = 1, ~ = 2 ~ - -  1, ~k = 2 ~ 2 ~ k - 1 - - ~ - 2 ,  k = 3, 4 . . . . .  

is applied for the calculation of the second derivatives in the right sides of (7). Two 
approximate formulas 

g l  = ahfPh ~ ' U2 ~ Z aM+2+ hq)k hN - -  hN 
h = l  b,=l " 

are constructed here for the velocity components, for example u, whose expansion coefficients 
~k, k = 1,  2 ,  . . . ,  N + 5 a r e  s o l u t i o n s  o f  s y s t e m s  o f  l i n e a r  a l g e b r a i c  e q u a t i o n s  
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(hN 
where (8) is the condition for equality of the functions U I and U 2 to values of the velocity 
components of u on the streamlines, (9) is the approximation of the boundary conditions on 
the disc and the film surface, (i0) and (ii) are approximation of the tangential stress con- 
tinuity conditions and the quantity vB2u/By 2 on the boundary between the layers, the last 
relationship follows from the equations of motion and continuity of the velocity on the 
boundary. 

After determining ak, k = i, 2 ..... N + 5, the expansion coefficients can be evaluated 
a Chebyshev polynomial series of the functions d2U1/dy 2 and d2U2/dy 2 and the value of B2u/3y2 
can later be determined on the streamlines [i]. 

The initial conditions 

h n (0) = H1 (0) n - -  H1 (0)] (n - -  A/I) , n = 1 . . . . .  M,  h~ (0) = HI (o) + i1 
M N - - M  

n = M + 1 . . . . .  N, u . (0 )  = U(hn), on(0) =,V(hn),  n = 1 . . . . .  N, 

a r e  a p p e n d e d  t o  ( 7 ) ,  w h e r e  U. V. a r e  g i v e n  f u n c t i o n s .  The  v a l u e  o f  t h e  f i l m  t h i c k n e s s  a t  
x = 0 is considered as the characteristic scale. 

Integration of (7) is by the Adams-Bashforth method of second-order accuracy [3]. 

There follows from (i), (4)-(6) and the axisymmetry of the flow that 
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Fig. l .  Dependence of the thicknesses and mean radia l  
velocities on the radius for the initial profile (13) 
for ~ = X = 0.5, 6 = i, qz(0) = 0.6, qi(0) = 1.5: i) HI/ 
Hza; 2) Hi/H2a; 3) um/u~ml; 4) Umi/U~m=; M = 5, N = i0. 

n' Qivl n~ Q~v~ 
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For small values of the parameter 6 the problem (1)-(6) without initial conditions has 
a solution whose principal terms of the expansion in the quantity 6 4 have the form 

1 
O~V<.~H~: u~ -- -- y~+ 1(1 - - ~ ) H ~ +  XHo.alV, 
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the values of H1a and Haa are determined from the algebraic equations 
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Radial flow velocity: i) x = 0.48; 
2) 0.72; 3) 1.44. 

Results of the computations show that, independently of the form of the initial condi- 
tions, the solution after the formation section takes on the form (12). The length x of the 
formation section and the degree of difference between the solutions on it from (12) depend 
on the parameters 6, ~, ~, the flow rates qz(0), q2(0), and the initial velocity component 

profiles. The case 

o<~y<~ H1: u = ~b{2{~+ (I --~)Hdy--yD, V = o, 

(13) 
H~<y< 1: U =  b{2y--y'+ I1 -+- ~(1 - -  2~)1H~-+- 2 ( ~ L - -  1) H~}, V = 0, 

was examined when studying the dependence of x a on the parameters, where the parameters b, H~ 
are related to q1(0), q=(0). The examples presented below correspond to values of the param- 
eters for which the quantity xais of the order of i. For ~ = ~ = 0.5, 6 = i, q2(0) = 2.5q I- 
(0) the values of x a = 1.44, 1.76, 2.0 for ql(0) = 0.2, 0.4, 0.6; in the case q1(0) = 0.2, 
q2(0) = 0.5, ~ = ~ = 0.5 for 62 = 0.2; 0.6; 1.4; then x a = 0.2, 1.04, 1.68; if q1(0) = 0.2, 
q=(0) = 0.5, ~ = % = 2, then x a = 0.28, 1.04, 1.44 for 6 = = 0.2, 0.6, 1.0. The condition 
(ll--H1/Hxal--}-I1--H2/H~al-l-II--uml/uaml[-~-ll--am2/Uam21)<O,04, is used as the criterion for the 

selection of x a, where Uml = ql/H~, Um2 = q2(H2 -- H I) are the radial velocities; Uam I, Uam 2 
are the corresponding asymptotic values. 

The influence of the initial azimuthal velocity was examined for a = i = 0.5, 6 = i, 
qx(0) = 0.4, q2(0) = i, where the radial velocity profile had the form (13) and V = 0, -0.2U, 
-0.4U, and x~ = 1.76 in all cases. 

Shown in Fig. 1 are the dependences H I, H a , Umx, Um2 in one of the computations for which 
examples of the radial velocity profiles are represented in Fig. 2. 

Therefore, the numerical method examined, which is an extension of that proposed in 
[i], permits computation of the flows of two-layer films of relatively large thickness for 
which the length of the formation section of the asymptotic solution is commensurate with 
the disc radius and can be used to study flows in which heat and mass transfer exists be- 

tween the fluids. 

NOTATION 

QI, Q2, fluid flow rates, ~, angular velocity of the disc; Pl, P2, 91, v2, fluid densi- 
ties and kinematic viscosity coefficients; H~, film characteristic thickness; R, least flow 
domain radius, 6 = H,/~-7~I, ~ = v2/vl, I = P;/Pl, parameters; r, 8, z, and Ur, us, u z, 
cylindrical coordinate system and the velocity components, and x a, dimensionless length of 
the section of asymptotic solution formation. 
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SHAPES OF ANNULAR LAYERS OF FLUID ON THE SURFACE OF A ROTATING 

CYLINDER 

V. E. Epikhin, P. N. Konon, 
and V. Ya. Shkadov 

UDC 532.516 

A qualitative and quantitative study is made of the equilibrium forms of plane 
and axisymmetric fluid layers. 

The power-engineering, chemical, and building sectors make use of production processes 
based on the phenomenon of instability of the free surface of a layer of fluid. For example, 
the production of thermal insulating wool by the centrifugal-roller method involves the dis- 
integration of a layer formed on the surface of a rapidly rotating cylinder when a mineral 
melt falls onto the roller [i]. The study [2] presented photographs reflecting the stages 
of formation of layers of a viscous fluid (such as glycerin or aqueous solutions of glycerin) 
obtained on an experimental unit which included a rotating cylindrical roller mounted on 
the horizontal shaft of an electric motor. Some of the liquid which falls onto the roller 
is thrown off by centrifugal forces. The rest of the liquid is entrained by the rotating 
surface in the form of an annular layer, with drops separating from the layer about its en- 
tire perimeter. When a certain period of time has elapsed after cessation of the supply 
of fluid, a steady-state regime is established in which the fluid ring, with a smooth sur- 
face, rotates as a solid. With an increase in the speed of rotation, the surface of the 
ring may acquire a wavy shape - as in the photograph shown in Fig. When the speed is in- 
creased above a certain critical value, more of the mass of the fluid is thrown from the 
roll and another stationary fluid ring with a wavy free surface is established. 

The studies [3-7] used the small parameter method to theoretically investigate the forms 
of equilibrium of liquid streams and layers near bifurcation points. Here, we perform a 
quantitative and qualitative study of nonlinear solutions in relation to values of the char- 
acteristic parameters. 

i. Formulation of the Problem and Derivation of the Basic Equation. We introduce a 
cylindrical coordinate system 0, x, y, @ (Fig. 2). The motion of the viscous fluid is 
described by the Navier-Stokes equations, the continuity equation, and the equation of the 
free surface: 

du 1 "~ - - -  VP + ~ e  Au,  VU - -  O, p = const ,  ( 1 )  

dh (2)  
- - = v ,  y = h ( x ,  9, t). 

dt 
The no rma l  and s h e a r  s t r e s s e s  on t h e  e x t e r n a l  s u r f a c e  o f  t h e  l a y e r  s a t i s f y  t h e  c o n d i -  

t i o n s  in  [ 8 ] .  Due t o  a d h e s i o n ,  t h e  components  o f  v e l o c i t y  on t h e  r o l l e r  s u r f a c e  have  t h e  
f o l l o w i n g  v a l u e s  : 

u = 0 ,  v = O ,  w =  1, V =  1. (3 )  
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